NovusAl - Technical Documentation

Version: 1.0
Last Updated: Augest 2025
Author: Technical Documentation Team

Table of Contents

Architecture Overview

Frontend Components (React.js)
Backend API Routes (Flask)
Backend Utilities

Email Polling System

Vector Database Integration (Qdrant)
Database Schema

Server Configuration

API Endpoints Reference

Setup and Installation
Deployment Guide

_.
N e B

—_

Architecture Overview

NovusAl is a full-stack web application built with a React.js frontend and dual
backend servers (Flask for Python-based AI operations and Node.js for database
operations). The application provides Al-powered document processing, email
integration, and intelligent chat capabilities.

Technology Stack

Frontend: - React.js 19.1.1 with functional components and hooks - React
Router for navigation - Sass for styling - KaTeX for mathematical notation
rendering - ReactMarkdown for rich text formatting - Lucide React for icons

Backend: - Flask (Python) for AI operations and API routes - Node.js with
Express for database operations - PostgreSQL for data persistence - OpenAl
GPT-4 integration for AI responses - Gmail API integration with OAuth2

Authentication & Security: - JWT (JSON Web Tokens) for session manage-
ment - BCrypt for password hashing - OAuth2 for Gmail integration - CORS
enabled for cross-origin requests

Backend Runtime Architecture

The Flask service inside novusai/src/backend/app is structured around
blueprints so each functional surface (auth, chat, billing, RAG, etc.) remains
independently deployable.

Execution flow: - app/__init__.py wires the global Flask instance, reg-
isters blueprints under /api, and initialises shared extensions (Redis cache,
database connection pool, colorised logging). - Every request passes through
utils/auth_helperes.token_required when the route demands authentica-
tion; the decorator decodes JW'Ts, loads cached user metadata, and attaches
a request.user dict for downstream handlers. - Database access is handled
through the shared psycopg2 connection (db.conn) for fast query execution;
high-concurrency tasks open short-lived connections via db.new_conn().

Cross-cutting concerns: - Caching: utils.Cache.cache fronts
Redis and powers usage counters, org subscription flags, and mem-
oised lookups (e.g., document metadata in RAG flows). - Usage

gating: Billing logic (billing.Subtract_Usage, billing.getUsage,
billing.is_org_subscription_active) is called before expensive op-
erations like RAG queries, streaming responses, and PDF generation

to enforce organisation quotas. - Observability: System events fun-
nel through utils.system_logger while user actions are captured with
utils.user_helpers.log, enabling per-tenant audits. - Streaming: Long-

running responses (e.g., /api/broad/citations/stream) leverage Flask’s
stream_with_context, yielding SSE events so the React client can render
partial outputs without blocking.

Frontend Components (React.js)
App.js - Main Application Controller
Location: novusai/src/App. js

Purpose: Serves as the root component managing application state, routing,
and user authentication flow.

Key Functions:

State Management

const [user, setUser] = useState(null); // Current authenticated user
const [activeTab, setActiveTab] = useState('Home'); // Current active view
const [messages, setMessages] = useState([]); // Chat message history
const [apiKey, setApiKey] = useState(''); // OpenAI API key

const [model, setModel] = useState('gpt-3.5-turbo'); // AI model selection
const [temperature, setTemperature] = useState(0.7); // AI response creativity

Core Functions addMessage(msg) - Purpose: Adds new messages to the
chat history - Parameters: msg (Object) - Message object containing sender
and text - Returns: None (updates state) - Usage: Called when user sends
message or Al responds

clearMessages () - Purpose: Resets chat history for new conversations - Pa-
rameters: None - Returns: None (clears messages state) - Usage: Triggered
by chat clear button or new session

Component Routing Logic: The App component conditionally renders dif-
ferent views based on activeTab state: - Home: Landing page with application
introduction - Upload: File upload interface for document processing - Viewer:
Document viewing and analysis interface - Tasks: Task management and pro-
cessing status - Search: Document search and retrieval - Chat: Al-powered
conversation interface - Settings: User preferences and API configuration -
Account: Authentication forms and user management - Dashboard: Analytics
and Gmail integration

Chat.jsx - AI Conversation Interface
Location: novusai/src/Frontend/components/Chat. jsx

Purpose: Provides an interactive chat interface with Al, supporting rich text,
mathematical notation, and conversation history.

Key Functions generateChatHash() - Purpose: Creates unique identi-
fiers for chat sessions - Returns: String - Unique hash combining random
characters and timestamp - Algorithm: Math.random().toString(36) +
Date.now() .toString(36) - Usage: Called when starting new chat sessions

renderMessageContent (text) - Purpose: Processes and renders message text
with LaTeX math support - Parameters: text (String) - Raw message text
with potential LaTeX notation - Returns: JSX elements with formatted con-
tent - Features: - Detects LaTeX expressions in \[...\] (block math) and
\(...\) (inline math) - Renders remaining text as Markdown - Supports com-
plex mathematical expressions using KaTeX

Chat Message Management:

// Message structure

{
sender: 'user' | 'bot',
text: string,
timestamp: Date

3

handleSendMessage () - Purpose: Processes user input and triggers Al re-
sponse - Flow: 1. Validates user input 2. Adds user message to conversation 3.

Calls backend API for AI response 4. Updates conversation history 5. Handles
error states

Features: - Real-time typing indicators - Message timestamp tracking - LaTeX
mathematical notation support - Markdown formatting for rich text - Chat
session persistence - Demo mode for API key-less operation

Dashboard.jsx - User Analytics and Gmail Integration
Location: novusai/src/Frontend/components/Dashboard. jsx

Purpose: Displays user statistics, manages Gmail integration, and provides
account overview.

Key Functions fetchDashboardStats() - Purpose: Retrieves user analyt-
ics from backend API - API Endpoint: GET /api/dashboard - Returns:
Object containing user statistics - Data Structure:

{
emails_processed: number, // Total ematils processed
documents_uploaded: number, // Total documents uploaded
ai_task_completed: number, // Total AI tasks completed
monthly_usage: number // Monthly usage percentage

}

fetchGmailLink() - Purpose: Retrieves Gmail OAuth authorization URL
- API Endpoint: GET /api/gmail/link - Returns: OAuth authorization
URL for Gmail integration - Flow: 1. Requests authorization URL from back-
end 2. Presents link to user for OAuth consent 3. Handles OAuth callback and
token storage

fetchLinkedAccounts() - Purpose: Retrieves list of linked Gmail accounts -
API Endpoint: GET /api/emails - Returns: Array of linked email addresses
- Usage: Displays connected Gmail accounts in dashboard

Dashboard Metrics Email Processing Statistics: - Tracks total emails
processed through the system - Updates automatically when emails are analyzed
- Displays processing success/failure rates

Document Upload Tracking: - Monitors document upload activity - Tracks
file types and sizes processed - Shows recent upload history

Al Task Completion: - Records all Al-powered operations - Includes chat
responses, document analysis, email processing - Provides performance metrics
and usage patterns

Monthly Usage Monitoring: - Calculates usage based on API costs and
processing time - Displays percentage of monthly limits consumed - Provides

usage forecasting and alerts

Upload.jsx - File Processing Interface
Location: novusai/src/Frontend/components/Upload. jsx

Purpose: Handles file uploads and document processing initialization.

Key Functions Current Implementation:

const Upload = () => (
<div className="card">
<h2> Uploaded Documents</h2>
<p>Drag & drop files (PDF, DOCX, PPTX, XLSX, TXT).</p>
<input type="file" multiple />
</div>
)5
Supported File Types: - PDF: Portable Document Format files - DOCX:

Microsoft Word documents - PPTX: Microsoft PowerPoint presentations -
XLSX: Microsoft Excel spreadsheets - TXT: Plain text files

Future Enhancement Areas: - File validation and size checking - Upload
progress indicators - Drag-and-drop functionality - File preview capabilities -
Processing status tracking - OCR integration for scanned documents

Settings.jsx - Configuration Management
Location: novusai/src/Frontend/components/Settings.jsx
Purpose: Manages user preferences and application configuration.

Note: Currently implemented as empty component, designed for future config-
uration options.

Planned Features: - OpenAl API key management - Model selection (GPT-
3.5, GPT-4, custom models) - Temperature and creativity settings - User in-
terface preferences - Data retention policies - Privacy settings - Export/import
configurations

Home.jsx - Landing Page
Location: novusai/src/Frontend/components/Home. jsx

Purpose: Provides application introduction and navigation entry point.

Key Functions useEffect for Visual Effects: - Manages overflow settings
for animated background - Prevents horizontal scrolling during animations -
Cleans up styles on component unmount

Visual Features: - Animated star field background (100 randomly positioned
particles) - Dynamic particle scaling and opacity - Respounsive circular design
element - Smooth CSS transitions and animations

Content Structure: - Application branding and name display - Feature de-
scription and value proposition - Call-to-action button for chat navigation -
Inspirational quote display

login.jsx - Authentication Interface

Location: novusai/src/Frontend/components/login. jsx

Purpose: Handles user authentication including login and registration.
Key Functions:

User Registration: - Form validation for username and password - Password
strength requirements - Duplicate username checking - Account creation with
secure password hashing

User Login: - Credential validation against database - JWT token generation
and storage - Session management and persistence - Login state management

Authentication Flow: 1. User submits credentials 2. Frontend validates
input format 3. API call to backend authentication endpoint 4. Backend verifies
credentials and generates JW'T 5. Frontend stores token and updates application
state 6. User is redirected to dashboard or requested page

FileStorage.jsx - Document Library & Viewer
Location: novusai/src/Frontend/components/FileStorage. jsx

Purpose: Lists every asset the signed-in user has uploaded, exposes inline
previews, and coordinates delete/download flows against the filestorage API.

Highlights: - Hydrates table state from GET /api/files/getUserFiles, nor-
malising payloads and surfacing aggregate counts. - Provides in-browser pre-
views by toggling view=1 on download URLs and embedding returned blobs
in an <iframe> modal. - Wraps destructive actions in confirmation modals
(ModernConfirm) and keeps optimistic Ul state in sync with backend responses.

Fetch & action dispatch:

const res = await fetch(${API}/files/getUserFiles”, {
headers: token ? { Authorization: “Bearer ${token} } : {},
b;

o Reuses the viewer state machine (viewerOpen, viewerMime, viewerUrl)
so the same payload supports inline preview or traditional download.

Rag.jsx - Retrieval Playground
Location: novusai/src/Frontend/components/Rag. jsx

Purpose: Lets power users query their personal RAG index with custom re-
trieval modes before surfacing the answer stream inside Chat.

Highlights: - Switches between summary and full-text retrieval while expos-
ing top_k and auto_case controls. - Renders grounding metadata (matches)
alongside the model answer so users can inspect source coverage.

Backend handshake:

const res = await fetch(${API}/rag/answer”, {

method: 'POST',

headers: { 'Content-Type': 'application/json', Authorization: “Bearer ${token} I},

body: JSON.stringify({ query, retrieval_mode: retrievalMode, top_k: Number (topK), auto_cas
IOk

o Errors are surfaced inline and the UI disables submission while the request
is in flight to avoid duplicate invocations.

Payments.jsx - Stripe Billing Console
Location: novusai/src/Frontend/components/Payments. jsx

Purpose: Embeds Stripe Elements to manage subscriptions, one-off top-ups,
and stored payment methods while mirroring backend usage counters.

Highlights: - Auto-detects organization status from GET /api/billing/org/subscription
and branches into subscription or deposit flows. - Lazily loads Stripe.js, caches

the Stripe instance, and mounts/unmounts Elements as intents change. -

Provides a guided top-up experience that maps dollars to internal usage credits
(USAGE_PER_DOLLAR).

Creating a top-up intent:

const res = await fetch('/api/billing/create-payment-intent', {
method: 'POST',
headers: { 'Content-Type': 'application/json', ...(token 7 { Authorization: “Bearer ${toke

body: JSON.stringify({ amount: cents, currency: 'usd', metadata: { purpose: 'topup' } }),

B

o After confirmation, the component polls GET /api/billing/payment-intent/<id>
to reflect status and unlock the dashboard when funds settle.

SshConsole.jsx - Data & Backup Console
Location: novusai/src/Frontend/components/SshConsole. jsx

Purpose: Presents a lightweight control panel for Qdrant, Postgres, and user-
file backups exposed by the data manager API.

Highlights: - Tabbed navigation reuses the same fetch pipeline while swapping
URL roots (/api/data/qdrant, /api/data/sql, /api/data/userfiles). - Re-
store operations include destructive warnings and stream status updates back
into the UL

Retrieving backup sets:
const res = await fetch(${API}/${activeTabl}/backups”, { credentials: 'include' });

e The console surfaces success/error banners and exposes one-click retries
to simplify recovery workflows.

UserManagment.jsx - Org Roster & Audit Tools
Location: novusai/src/Frontend/components/UserManagment. jsx

Purpose: Gives administrators a consolidated view of organization members,
role assignments, and scoped log downloads.

Highlights: - Pairs GET /api/users/org with cached JWT identity lookups
to present editable role pickers per user. - Surfaces admin-only log listings
via GET /api/logs/list and streams individual files into a modal viewer. -
Wraps irreversible actions (role changes, deletions) in confirmation prompts that
require an emailed code where appropriate.

Org roster retrieval:

const res = await fetch(${API}/users/org , { headers: authHeader() 1});
const data = await res.json();
setUsers(Array.isArray(data.users) 7 data.users : [1);

e Local edits state tracks unsaved role adjustments so the Ul can batch
updates without leaving users in inconsistent states.

Backend API Routes (Flask)
auth.py - Authentication Management
Location: novusai/src/backend/app/routes/auth.py

Purpose: Handles user authentication, registration, and JWT token manage-
ment.

Key Functions register_user() - Route: POST /api/register - Pur-
pose: Creates new user accounts with secure password storage - Parameters:
- username (String): Unique username for the account - password (String):
Raw password to be hashed - Process: 1. Validates input parameters for
completeness 2. Hashes password using Werkzeug security functions 3. In-
serts new user record into PostgreSQL database 4. Handles duplicate user-
name errors - Returns: Success message or error details - Security: Uses
generate_password_hash() with salt for secure storage

login_user() - Route: POST /api/login - Purpose: Authenticates users
and provides JWT access tokens - Parameters: - username (String): User’s
login identifier - password (String): Raw password for verification - Process:
1. Retrieves user record from database by username 2. Verifies password us-
ing check_password_hash() 3. Generates JWT token with user information
and expiration 4. Fetches Gmail credentials and recent emails for dashboard 5.
Returns authentication token and user details - JWT Payload:

{
'id': user_id,
'username': username,
'exp': datetime.utcnow() + timedelta(hours=2)

e Returns: JWT token, user data, and success confirmation

get_user_info() - Route: GET /api/user - Purpose: Retrieves current user
information from JWT token - Authentication: Requires valid JWT token
via @token_required decorator - Returns: User ID and username from token
payload - Usage: Profile display, user validation, session verification

Security Features JWT Token Management: - 2-hour expiration policy
for security - HS256 algorithm for token signing - Secret key protection via
environment variables - Automatic token validation on protected routes

Password Security: - Werkzeug password hashing with automatic salt gener-
ation - Protection against rainbow table attacks - Secure comparison functions
to prevent timing attacks

chat.py - Chat Session Management
Location: novusai/src/backend/app/routes/chat.py

Purpose: Manages Al chat sessions, message persistence, and conversation
history.

Key Functions start_chat() - Route: POST /api/chat/start - Pur-
pose: Initializes new chat sessions with unique identifiers - Authentication:
Requires JWT token - Parameters: - chathash (String): Unique session iden-
tifier - chatname (String): Human-readable chat title - Process: 1. Extracts
user information from JWT token 2. Creates initial chat data structure 3. In-
serts new session record into database 4. Handles database transaction rollback
on errors - Database Schema:

INSERT INTO user_chat_sessions (chathash, username, chat_data)
VALUES (hash, username, {

"chatname": string,

"user": [],

"bot": []
b

chat() - Route: POST /api/chat - Purpose: Processes user messages and
generates Al responses - Authentication: Requires JWT token - Parameters:
- chathash (String): Session identifier - chatname (String): Chat title - usermsg
(String): User’s message content - Process: 1. Validates user authentication
and message content 2. Calls OpenAl API through chatgpt_response () utility
3. Retrieves existing chat session or creates new one 4. Appends user message
and bot response to conversation 5. Updates database with new message history
6. Handles error states and database rollbacks - Returns: Al response text and
conversation update confirmation

rename_chat (chathash) - Route: PATCH /api/chat/<chathash>/rename -
Purpose: Updates chat session titles for organization - Authentication: Re-
quires JWT token - Parameters: - chathash (String): Session identifier from
URL - new_name (String): Updated chat title - Process: 1. Validates chat own-
ership and existence 2. Updates chat_data JSON with new title 3. Commits
changes to PostgreSQL database - Returns: Rename confirmation or error
message

delete_chat (chathash) - Route: DELETE /api/chat/<chathash> - Pur-
pose: Removes chat sessions and associated history - Authentication: Re-
quires JWT token - Security: Ensures users can only delete their own chats
- Process: 1. Validates chat ownership via username check 2. Removes chat
record from database 3. Handles foreign key constraints and dependencies -
Returns: Deletion confirmation

get_user_chats() - Route: GET /api/chat - Purpose: Retrieves all chat
sessions for authenticated user - Authentication: Requires JWT token - Pro-

10

cess: 1. Queries database for user’s chat sessions 2. Transforms JSON chat
data into structured format 3. Interleaves user and bot messages chronologically
4. Handles unbalanced conversations (more user or bot messages) - Returns:
Array of chat objects with messages and metadata - Message Format:

{
'id': session_id,
'title': chat_name,

'messages': [
{'sender': 'user', 'text': message_content},
{'sender': 'bot', 'text': ai_response}

1,

'hash': unique_identifier

3

Chat Data Structure Database Storage: Chat conversations are stored
as JSON objects in PostgreSQL, allowing flexible message structures while main-
taining relational benefits.

JSON Schema:

{
"chatname": "Session Title",
"user": ["User message 1", "User message 2"],
"bot": ["Bot response 1", "Bot response 2"]
}

This parallel array structure maintains message order and conversation flow
while enabling efficient database queries and updates.

gmail.py - Gmail Integration
Location: novusai/src/backend/app/routes/gmail.py

Purpose: Manages Gmail OAuth integration and email processing capabilities.

Key Functions get_user_credentials(user_id) - Purpose: Retrieves
stored Gmail OAuth credentials for authenticated users - Parameters:
user_id (Integer): Database user identifier - Process: 1. Queries
gmail_tokens table for user credentials 2. Deserializes JSON credential
data 3. Creates Google OAuth2 Credentials object 4. Handles missing or
expired credentials - Returns: Google Credentials object ready for API calls -
Error Handling: Raises exception if no credentials found

list_user_emails(service, max_results=10) - Purpose: Fetches recent
emails from user’s Gmail account - Parameters: - service (Google API Ser-
vice): Authenticated Gmail API client - max_results (Integer): Maximum

11

number of emails to retrieve - Process: 1. Calls Gmail API messages.list()
endpoint 2. Retrieves message details for each email 3. Extracts subject lines
and snippets from headers 4. Handles API rate limits and errors - Returns:
List of tuples containing (subject, snippet) - Usage: Dashboard email preview
and processing initialization

Gmail API Integration OAuth2 Flow: 1. User initiates Gmail linking
from dashboard 2. Application redirects to Google OAuth consent screen 3.
User grants permissions for email access 4. Google returns authorization code
to callback URL 5. Application exchanges code for access and refresh tokens 6.
Tokens stored securely in database for future API calls

Supported Gmail Operations: - Email Listing: Retrieve recent messages
with metadata - Message Reading: Full email content access including attach-
ments - Header Parsing: Extract sender, recipient, subject, and timestamp
information - Snippet Generation: Automatic email preview text creation

Security Considerations: - Minimal scope requests (read-only email access) -
Secure token storage with encryption at rest - Token refresh handling for expired
credentials - User consent verification and revocation support

dashboard.py - User Analytics and Account Management
Location: novusai/src/backend/app/routes/dashboard.py

Purpose: Provides user statistics, analytics, and account management end-
points.

Key Functions get_dashboard() - Route: GET /api/dashboard - Pur-
pose: Retrieves comprehensive user analytics and usage statistics - Authen-
tication: Requires JWT token via @token_required decorator - Process: 1.
Extracts user ID from JWT token payload 2. Queries dashboard table for user
metrics 3. Handles missing dashboard records (creates default) 4. Returns for-
matted analytics data - Returns: JSON object with user statistics - Data
Structure:

{
"emails_processed": O, // Total emails analyzed
"documents_uploaded": O, // Total files processed
"ai_task_completed": O, // Total AI operations
"monthly_usage": 0.00 // Usage percentage of monthly limit
}

get_linked_gmail_accounts() - Route: GET /api/emails - Purpose: Lists
all Gmail accounts linked to user’s profile - Authentication: Requires JWT
token - Process: 1. Queries gmail_tokens table for user’s linked accounts
2. Extracts email addresses from credential records 3. Orders results by most

12

recently linked 4. Handles database connection errors - Returns: Array of
linked email addresses - Usage: Dashboard account management and email
selection

Analytics Tracking Usage Metrics: The dashboard system tracks several
key metrics to provide users with insights into their application usage:

Email Processing Metrics: - Incremented when emails are analyzed by AT -
Tracks success/failure rates - Monitors processing time and performance

Document Upload Tracking: - Records file uploads and processing attempts
- Tracks file types and sizes - Monitors storage usage

AI Task Completion: - Counts all Al-powered operations - Includes chat
responses, document analysis, email processing - Tracks API costs and token
usage

Monthly Usage Calculation: - Calculates percentage of monthly limits con-
sumed - Based on API costs, processing time, and storage usage - Provides usage
forecasting and limit warnings

broad__questions.py - RAG Orchestrator & Humanizer
Location: novusai/src/backend/app/routes/broad_questions.py

Purpose: Serves “broad question” traffic by chaining the RAG service, optional
humanisation, citation streaming, and billing enforcement.

Highlights: - Proxies payloads to /api/rag/answer with preserved cook-
ies/headers so downstream decorators continue to see the caller’s identity. -
Adds specialist endpoints for Markdown repair, citation retrieval (/citations
& /citations/stream), and per-user Llamalndex conversations. - Humanised
modes rewrite raw answers into structured briefs (executive, investment, legal,
policy, etc.), persist them to chat history, and debit organisation usage.

Representative flow:

rag = _call_rag_answer(
query_text=query,
chathash=chathash,
chatname=chatname,
top_k=int(top_k) if isinstance(top_k, int) else None,
auto_case=bool (auto_case) if isinstance(auto_case, bool) else None,
retrieval_mode=retrieval_mode,

o After the base answer is produced, _strip_metadata_tags scrubs source
markers before the humaniser runs, and compute_usage_from_messages
drives real-time usage deductions.

13

e citations() and citations/stream layer on usage gating (is_org_subscription_active,
getUsage) before calling RAG, then hydrate citation bodies either from
cached RAG summary blocks or direct database lookups when needed.
e The streaming handler buffers raw chunks, cleans Markdown with
fix_common_md, and emits structured SSE events so the React client can
render partial answers and usage metrics while the model writes.
e htmlString(...) transforms investment briefs into HTML pamphlets
via the OpenAl mini model and feeds the result into generate_pamphlet,
returning both the raw JSON and rendered HT'ML back to the client.

Rag.py - Retrieval-Augmented Answer Service
Location: novusai/src/backend/app/routes/Rag.py

Purpose: Implements hybrid BM25/vector retrieval over per-user Qdrant col-
lections and synthesises grounded answers, citations, and graphs.

Highlights: - Caches Llamalndex handles and Qdrant query engines so succes-
sive requests avoid expensive rebuilds. - Offers /search, /answer, /citations,
/raw, and /graph endpoints, allowing downstream services to pull either struc-
tured hits or rendered HTML. - Annotates retrieved context with alias markers
and validates model citations against the actual source IDs before returning
them.

Key internals: - retrieve_hybrid(...) merges BM25 hits from Postgres
with Qdrant vector scores using Reciprocal Rank Fusion. Each hit is a dict
containing id_tag, source_id, subject, body, score, and the raw payload re-
trieved from storage. - _ensure_embed_model_once () pins the Llamalndex em-
bedding model to match the configured OpenAl embedding so repeated calls do
not reconfigure global state. - _CACHE_LOCK protects per-user index caching; the
module stores VectorStoreIndex objects in _INDEX_CACHE keyed by Qdrant col-
lection name. - build_context_full_sources(...) truncates concatenated
context to MAX_CTX_CHARS (or FULLTEXT_CTX_CHARS for full-text mode) and
injects alias annotations so the downstream LLM can cite sources deterministi-
cally. - check_grounding_types(...) inspects the generated answer, verifying
that every cited email_id: or doc_id: exists in the retrieved context before
marking grounding_ok.

Answer pipeline:

if USE_HYBRID:

hits = retrieve_hybrid(query, case_label=case_label, top_k=top_k, user_id=user_id, retr:
ctx = build_context_full_sources(hits, user_id=user_id, max_chars=ctx_cap, retrieval_mode=re
ans = call_llm(query, ctx_annot)

o If a case filter removes too much context, the service retries without it to
keep answer quality high.

14

o When citations are requested, _call_rag_citations reuses the same re-
trieval stack but returns the raw chunk metadata; the streaming variant
serialises SSE messages (token, usage, meta, done) to keep Ul progress
responsive.

upload.py - Multi-Format Document Ingestion
Location: novusai/src/backend/app/routes/upload.py

Purpose: Normalises uploaded assets (PDF, DOCX, images, emails, etc.), runs
OCR and summarisation, and indexes both metadata and embeddings into Post-
gres/Qdrant.

Highlights: - Configurable chunk size/overlap with optional title injection
improves downstream retrieval relevance. - Generates per-document summaries
that feed a dedicated “summary” vector track for broad-mode queries. -
Falls back to manual Qdrant upserts when Llamalndex writes omit required
metadata, guaranteeing every point keeps doc_id and user_id payload
fields. - Runs best-effort OCR via pdf2image + pytesseract for image-heavy
PDFs, and routes DOCX, EML, and legacy formats through specialised
parsers (python-docx, BytesParser). - For emails, combines header metadata
(extract_metadata_from_eml) with sanitised bodies (sanitize_bodies) be-
fore indexing to maintain structured search. - Usage counters are incremented
at each major milestone (set_progress, Subtract_Usage), allowing the
frontend to render fine-grained ingestion status updates.

Embedding & storage guard:

vector_store = QdrantVectorStore(client=qdrant, collection_name=collection)
VectorStoreIndex.from_documents([doc], storage_context=storage_context, embed_model=1i_embe«

e On failure, openai_embedding(text) provides a manual vector and the
code upserts via qdrant .upsert, preserving payload integrity.

filestorage.py - Secure Asset Delivery
Location: novusai/src/backend/app/routes/filestorage.py

Purpose: Handles authenticated downloads, inline previews, and audit logging
for user-managed documents.

Highlights: - Normalises paths and enforces directory boundaries to prevent

traversal attempts. - Converts Word documents to PDF on demand with
headless LibreOffice when view=1 is supplied, streaming the result directly
to the browser. - Logs every interaction through user_audit_log and

log_system_event, recording mode (view/download) and organisation context.

15

- Delete operations cascade into qdrant_helper.delete_document_points_by_ids
so vector payloads remain in sync with the relational document catalogue.

Inline conversion path:

if view_mode and ext in ("doc", "docx"):
proc = subprocess.run(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, timeout=120)
with open(pdf_path, "rb") as f:
data = f.read()
resp = send_file(io.BytesIO(data), mimetype="application/pdf", as_attachment=False, dow:

e Temporary directories are cleaned up immediately after streaming to keep
the filesystem tidy.

pdf.py - HTML-to-PDF Rendering Service
Location: novusai/src/backend/app/routes/pdf.py

Purpose: Uses Playwright-controlled Chromium to convert HTML fragments
into downloadable PDFs for investor briefs and reports.

Highlights: - Waits for fonts/media to load before rendering, ensuring the

PDF matches the screen layout. - Returns binary responses with explicit
Content-Length and Content-Disposition headers for reliable browser
handling.

Renderer:

with sync_playwright() as p:
browser = p.chromium.launch()
page = browser.new_page()
page.set_content (html, wait_until="networkidle")
pdf_bytes = page.pdf (format=format, landscape=landscape, print_background=True, prefer_

e Errors are surfaced as JSON responses so the frontend can display action-
able feedback.

billing.py - Stripe Subscriptions & Usage Accounting
Location: novusai/src/backend/app/routes/billing.py

Purpose: Centralises subscription lifecycle management, Stripe billing hooks,
and the usage ledger consumed by AI workloads.

Highlights: - Persists subscription status and usage counters in Postgres while
mirroring hot values in Redis for fast reads. - Supports both recurring plans
(/create-subscription) and ad-hoc top-ups via PaymentIntents. - Deducts
AT costs from organisational balances through Subtract_Usage, powering

16

gating logic across chat, RAG, and broad flows. - get_org_subscription
translates Stripe states into internal status codes (1=active, 2=inactive,
3=needs_topup) so the React dashboard can branch flows deterministically.
- grant_subscription_usage seeds new organisations with the configured
credit block (default 15,000 units) immediately after a successful billing event.

Payment intent creation:

pi = stripe.PaymentIntent.create(
amount=amount,
currency=currency,
automatic_payment_methods={"enabled": True},
*xk({"receipt_email": receipt_email} if receipt_email else {}),
)

return jsonify({"clientSecret": pi.client_secret, "payment_intent": pi.id})

¢ Successful intents trigger subscription activation and top up organisational
usage credits.

backups.py - Qdrant, SQL, and User File Backups
Location: novusai/src/backend/app/routes/backups.py

Purpose: Manages vector store, Postgres, and user file backups with both
modern and legacy URL namespaces.

Highlights: - Streams Qdrant collections into tarballs, saves PCA visuali-
sations to Postgres, and restores datasets atomically. - Automates Postgres
dumps and enforces pruning of the oldest user-file backups to control storage.
- Re-exports every endpoint under /api/data/* for compatibility with older
frontends. - qdrant_visualize reads vectors in batches of 1,000, reduces them
to 2-D with PCA, and stores the Plotly HTML snippet in the gdrant_graph
table for the requesting user. - Backups are staged to /tmp before upload to
S3 helpers (utils.s3_helper), minimising downtime while large archives are
generated.

Compatibility mapping:

compat_bp.add_url_rule("/qdrant/backups", view_func=qdrant_list_backups, methods=["GET"])
compat_bp.add_url_rule("/sql/restore", view_func=sql_restore, methods=["POST"])
compat_bp.add_url_rule("/userfiles/restore", view_func=userfiles_restore, methods=["POST"])

¢ Shared implementations keep logging and validation consistent across both
namespace styles.

17

gmail.py - Google OAuth & Inbox Snapshotting
Location: novusai/src/backend/app/routes/gmail.py

Purpose: Handles Gmail OAuth, token storage, and lightweight inbox previews
for dashboard consumption.

Highlights: - Persists OAuth state tokens to defend against CSRF and stores
credentials per user in Postgres. - Builds Gmail service clients on demand to
fetch subject/snippet previews without re-running the heavy ingestion pipeline.
- Respects environment-provided redirect URIs so the same code can run locally
or in production. - Token blobs are serialised as JSON (credentials_json)
and rehydrated into google.oauth2.credentials.Credentials objects before
each API call. - Helper _pick_col detects schema differences between deploy-
ments, allowing the service to resolve the correct column names (e.g., gmail_id
vs google_id).

Authorization URL issuance:

flow = _flow()
auth_url, state = flow.authorization_url(access_type="offline", include_granted_scopes="tru
cur.execute("INSERT INTO oauth_states (state, user_id, provider) VALUES (%s, %s, 'google') I

e The callback exchanges the code for tokens and stores them via
_new_conn() to avoid interfering with the global connection pool.

logs.py - Organisation Log Browser
Location: novusai/src/backend/app/routes/logs.py
Purpose: Gives administrators scoped access to archived application logs.

Highlights: - Enforces admin-only access and normalises requested filenames
to prevent traversal. - Supports inline previews (view=1) or forced downloads
and logs every action for auditability. - Uses os.scandir sorted by mtime to
surface the freshest logs first and gracefully handles missing directories (returns
empty list). - Download routes guard against directory traversal by requiring the
resolved path to remain inside the organisation-specific folder before delegating
to send_file.

Admin list:

ok, resp = _require_admin()
if not ok:
return resp
org_dir = _org_log_dir()
entries = _serialize_entries(org_dir)
return jsonify({"logs": entries})

18

o Uses compatibility fallbacks when calling send_file so the route works
across Flask versions.

users.py - Organisation Membership Management
Location: novusai/src/backend/app/routes/users.py

Purpose: Powers the user management console by exposing safe role updates,
deletion workflows, and organisation rosters.

Highlights: - Validates both actor and target ranks before applying changes,
preventing privilege escalation or self-demotion. - Issues email-based delete
codes, caches pending authorisations, and requires verification before remov-
ing users and their vector data. - Provides public organisation listings for
onboarding flows via /api/users/organizations. - update_user_role
double-checks organisation equality (actor vs target) and forbids self up-
dates, ensuring even admins cannot accidentally lock themselves out. -
Deletion flow: /<user_id>/delete/request generates a 6-digit code,
emails it via utils.gmail_helpers.send_email, stores the request in Re-
dis, and /<user_id>/delete/verify validates the code before invoking
Admin_Tools.Qdrant_Manager.delete_collections_for_user.

Role update enforcement:

if actor_rank <= target_rank:
return _deny("Forbidden: target is not lower rank", 403)
if new_role > actor_rank:
return _deny("Forbidden: cannot assign role above your rank", 403)
with conn.cursor() as cur:
cur.execute ("UPDATE users SET role = %s WHERE id = %s", (int(new_role), str(user_id)))

o Successful updates log both user-facing and system events so audit trails
remain complete.

Backend Utilities

openai__client.py - AI Integration
Location: novusai/src/backend/utils/openai_client.py
Purpose: Handles OpenAl API integration, cost tracking, and Al response

generation.

Key Functions chatgpt_response(user_message, user_id) - Purpose:
Generates Al responses using OpenAl’s GPT models with cost tracking - Pa-
rameters: - user_message (String): User’s input text for AI processing -

19

user_id (Integer): Database user identifier for usage tracking - Process: 1.
Prompt Engineering: Constructs system prompt with specific instructions
- Sets AI personality as technical assistant - Specifies response format (natu-
ral paragraphs with Markdown/LaTeX) - Includes user message in structured
format 2. API Call: Sends request to OpenAl with configured parameters -
Model: gpt-4.1-nano-2025-04-14 (cost-optimized) - Single-turn conversation
format - Error handling for API failures and rate limits 3. Usage Tracking:
Records API consumption and costs - Extracts token usage from response - Cal-
culates cost based on current pricing - Updates user’s monthly usage statistics
4. Database Updates: Maintains user analytics - Increments Al task comple-
tion counter - Updates monthly usage percentage - Creates dashboard record if
needed

Cost Calculation Token Pricing Model:
cost = (prompt_tokens * 0.0001 + completion_tokens * 0.0004) / 1000

Usage Tracking: - Prompt tokens: Input text tokenization count - Completion
tokens: Generated response tokenization count - Cost calculation: Based on
OpenAl’s current pricing structure - Monthly usage: Calculated as percentage
of $25 monthly limit

New cost helpers:

usage = compute_usage_from_messages(
messages=[{"role": "system", "content": systempromptl}, {"role":
completion_text=response_text,
model_key="mini",

e estimate_message_cost and compute_usage_from_messages now un-
derpin every Al call, providing consistent USD costs that billing routes
subtract from organisation balances.

Cache.py - Redis-Backed Memoisation Layer
Location: novusai/src/backend/utils/Cache.py

Purpose: Replaces the legacy in-process cache with a Redis-backed implemen-
tation that survives worker restarts and scales across containers.

Highlights: - Serialises arbitrary Python objects with pickle/base64 and pre-
fixes keys with CACHE_REDIS_PREFIX to avoid collisions. - Provides set_many,
get_many, and namespaced memoisation helpers so routes can cache expensive
lookups without bespoke Redis wiring. - Falls back gracefully when cached
values cannot be deserialised, returning the raw payload instead of failing the
request.

20

nusern,

"content":

user.

Example usage:

mem_cache.set(f"user:role:{username}", role_name, ttl=ttl_seconds)
keys = mem_cache.keys(prefix="org:usage:")

o The same instance is imported across routes (auth, billing, broad ques-
tions) to keep cache semantics consistent.

redis_ client.py - Central Redis Connection Factory
Location: novusai/src/backend/utils/redis_client.py

Purpose: Supplies configured Redis clients (default + secondary DBs) based
on environment variables used by the cache and payment subsystems.

Highlights: - Exposes get_redis_client() for general caching and
redis_client/JWT_REDIS_PREFIX for auth token revocation. - Supports
password-protected deployments and configurable database selections without
code changes.

auth__helperes.py - JWT Guard Rails
Location: novusai/src/backend/utils/auth_helperes.py

Purpose: Provides the @token_required decorator and helper utilities that
secure every protected route.

Highlights: - Extracts Bearer tokens from headers and validates them with
PyJWT using the configured algorithm and secret (JWT_SECRET, JWT_ALG). -
Mirrors session state into Redis (JWT_REDIS_PREFIX) so revocations or TTL
expiries take effect immediately across workers. - On successful decode, en-
riches request.user with Redis claims (role, organisation, etc.) and ensures
downstream handlers always have an id field.

Decorator usage:

Otoken_required
def answer_route():
user_id = request.user["id"]

e dashboard_user_required wraps routes that need convenient access to
the current user ID while retaining the original response signature.

21

user__helpers.py - User Context & Audit Trail
Location: novusai/src/backend/utils/user_helpers.py

Purpose: Supplies helpers for reading cached user metadata, resolving organi-
sation slugs, and writing per-user audit logs.

Highlights: - get_user_role() and get_organization() cache lookups
in Redis for 5 minutes to avoid repeated Postgres reads on hot paths. -
log(action) writes both a tenant-wide Master.log entry and a per-user log
file under /Logs/<org>/<user>.log, tagging each line with timestamps and
usernames. - Provides lightweight accessors (get_user_id, get_username)
that lean on the request.user payload inserted by token_required.

system__logger.py - Structured System Logging
Location: novusai/src/backend/utils/system_logger.py

Purpose: Centralises infrastructure-level logging for operational events that
are not tied to a single end user.

Highlights: - log_system_event appends JSON-serialised metadata to
Master.log with UTC timestamps and severity levels. - Mirrored console
output uses colour-coded severity (INFO, WARNING, ERROR, DEBUG) for quick
scanning inside container logs. - Helper wrappers (log_warning, log_error,
log_debug) keep call sites terse and consistent.

qdrant__helper.py - Vector Store Management
Location: novusai/src/backend/utils/qdrant_helper.py

Purpose: Wraps Qdrant client calls for creating per-user collections, inserting
embeddings, and evicting cached RAG artefacts.

Highlights: - ensure_user_collection guarantees the collection dimen-
sion matches the active embedding model; if it drifts, the helper rebuilds
the collection with the correct vector size. - invalidate_user_rag_cache
sweeps Redis keys (rag:{user_id}:*) whenever documents are deleted
so subsequent queries see fresh context. - Provides high-level helpers
(delete_document_points_by_ids, upsert_point, search) consumed by the
upload pipeline, memory glue, and RAG services.

memory__glue.py - Conversational Memory Service

Location: novusai/src/backend/utils/memory_glue.py

22

Purpose: Maintains long-lived chat memory in Qdrant so assistants can recall
prior messages on subsequent turns.

Highlights: - Embeds each utterance with OpenAl’s text-embedding-3-small

and stores it in the per-user chat_memory collection through qdrant_helper.upsert_point.
- retrieve_context re-embeds the incoming query, filters by session_id,

and returns the top-k historical messages ranked by cosine similarity. -
build_messages_with_memory injects the retrieved snippets into the system

prompt so the downstream model receives an ordered memory block.

End-to-end helper:
answer = chat_with_memory(user_id, session_id, user_input)

o The routine saves user/assistant turns, fetches relevant context, queries
OpenAl, and persists the response to maintain continuity.

AT Response Configuration System Prompt: The function uses a care-
fully crafted system prompt to ensure consistent, high-quality responses: - Tech-
nical assistant persona for professional interactions - Natural paragraph for-
matting for readability - Markdown support for rich text formatting - LaTeX
integration for mathematical expressions - Context-aware responses based on
application domain

Model Selection: - Primary: gpt-4.1-nano-2025-04-14 for cost efficiency -
Fallback options can be configured for different use cases - Model parameters
optimized for legal and technical document processing

gmail__helpers.py - Gmail API Operations
Location: novusai/src/backend/utils/gmail_helpers.py

Purpose: Provides utility functions for Gmail API integration and email pro-
cessing.

Key Functions get_user_credentials(user_id) - Purpose: Retrieves
and deserializes stored Gmail OAuth credentials - Parameters: user_id
(Integer): Database user identifier - Process: 1. Queries gmail_tokens table
for user’s credential data 2. Deserializes JSON credential string 3. Creates
Google OAuth2 Credentials object 4. Validates credential integrity and
expiration - Returns: google.oauth2.credentials.Credentials object -
Error Handling: Raises exception for missing or invalid credentials - Usage:
Called before any Gmail API operations

list_user_emails(creds, max_results=10) - Purpose: Fetches and pro-
cesses recent emails from Gmail account - Parameters: - creds (Credentials):

23

Authenticated Google OAuth2 credentials - max_results (Integer): Maximum
number of emails to retrieve (default: 10) - Process: 1. Service Creation:
Builds authenticated Gmail API service client 2. Message Listing: Calls
Gmail API to retrieve message IDs 3. Detail Retrieval: Fetches complete
message data for each email 4. Header Parsing: Extracts relevant information
from email headers - Subject line extraction with fallback for missing subjects
- Snippet generation for preview purposes - Timestamp and sender information
processing 5. Data Formatting: Returns structured email data - Returns:
List of tuples: [(subject, snippet), ...] - Error Handling: Manages
API rate limits, network errors, and authentication issues

Gmail API Integration Details Authentication Flow: 1. OAuth2 cre-
dentials stored securely in database 2. Credentials include access token, refresh
token, and scope information 3. Automatic token refresh handling for expired
credentials 4. Secure credential storage with JSON serialization

Email Processing Capabilities: - Subject Extraction: Parses email head-
ers for subject information - Snippet Generation: Creates preview text from
email content - Header Analysis: Extracts metadata including sender, recip-
ient, date - Attachment Handling: Framework for processing email attach-
ments - Thread Support: Capability for conversation thread processing

API Scope Management: - Minimal required permissions for security - Read-
only access to preserve user privacy - Scope validation during OAuth consent
process

auth__helpers.py - Authentication Utilities
Location: novusai/src/backend/utils/auth_helpers.py

Purpose: Provides authentication decorators and JWT token validation utili-
ties.

Key Functions @token_required Decorator - Purpose: Validates JWT
tokens and protects API endpoints - Functionality: Function decorator that
wraps protected routes - Process: 1. Token Extraction: Retrieves token
from Authorization header - Expects format: Bearer <jwt_token> - Handles
missing or malformed headers 2. Token Validation: Decodes and verifies
JWT token - Uses configured JWT secret key - Validates token signature and
structure - Checks token expiration timestamp 3. User Data Injection: Adds
decoded user information to request - Sets request.user with token payload
- Includes user ID, username, and other claims 4. Error Handling: Returns
appropriate HT'TP responses for failures - 401 Unauthorized for missing tokens
- 401 Unauthorized for expired tokens - 401 Unauthorized for invalid tokens

Usage Example:

24

©@auth_bp.route('/protected', methods=['GET'])
Otoken_required
def protected_route():

user_id = request.user['id']

username = request.user['username']

Protected functionality here

@dashboard_user_required Decorator - Purpose: Enhanced authentication
for dashboard-specific operations - Functionality: Combines token validation
with user ID extraction - Process: 1. Validates JWT token using standard
process 2. Extracts user ID from token payload 3. Passes user ID as first
parameter to wrapped function 4. Handles missing user ID in token payload -
Usage: Simplifies dashboard route implementations

JWT Configuration Token Structure:

{
'id': user_database_id,
'username': user_login_name,
'exp': expiration_timestamp,
'iat': issued_at_timestamp
}

Security Features: - HS256 algorithm for token signing - Configurable expira-
tion times (default: 2 hours) - Secret key protection via environment variables
- Automatic token validation on all protected routes

Error Response Format:

{

"error": "Token is missing" | "Token expired" | "Invalid token"

}

user__helpers.py - User Data Utilities
Location: novusai/src/backend/utils/user_helpers.py

Purpose: Provides convenience functions for accessing user information from
request context.

Key Functions get_user_id() - Purpose: Retrieves current user’s
database ID from JWT token - Returns: Integer user ID - Prerequi-
sites: Must be called within @token_required decorated route - Usage:
Simplifies access to user ID in protected routes - Implementation: return
request.user.get("id")

get_username() - Purpose: Retrieves current user’s username from JWT
token - Returns: String username - Prerequisites: Must be called within

25

@token_required decorated route - Usage: User identification and logging -
Implementation: return request.user.get("username")

Usage Context These utility functions are designed to be used within Flask
routes that are protected by the @token_required decorator. They provide
convenient access to user information without requiring direct token parsing in
application code.

Example Usage:

@chat_bp.route('/example', methods=['POST'])

Otoken_required

def example_route():
user_id = get_user_id() # Gets current user's database ID
username = get_username() # Gets current user's login name
Route logic here

Email Polling System
Location: novusai/src/backend/polling.py

Purpose: Implements a sophisticated, continuous email monitoring and pro-
cessing service that transforms Gmail content into searchable, Al-analyzable
data structures.

System Architecture

The email polling system serves as a critical bridge between Gmail’s API and
NovusAI’'s Al-powered analysis capabilities. It operates as a long-running dae-
mon service that:

e Monitors Multiple Gmail Accounts: Multi-tenant processing with
isolated contexts per user

« Extracts Rich Metadata: Comprehensive parsing of headers, content,
and attachments

¢ Generates Vector Embeddings: Al-powered semantic representations
using OpenAl embeddings

e Maintains Dual Storage: Structured data in PostgreSQL, vectors in
Qdrant

¢« Ensures Data Consistency: ACID-compliant transactions with
checkpoint-based recovery

Core Components 1. Email Discovery and Authentication

Multi-user UOAuth2 credential management
for user_id in get_all_user_ids():

26

creds = get_user_credentials(user_id)
gmail_service = build('gmail', 'vl', credentials=creds)

2. Incremental Processing Pipeline

Checkpoint-based resumable processing
last_seen = get_last_seen_email_id(user_id)
messages = gmail_service.users() .messages().list(userId='me', maxResults=5)

3. Content Extraction and Parsing

Comprehensive metadata extraction
meta = extract_email_metadata(msg_data, headers)
email_string = format_email_to_string(user_id, email_id, meta)

4. Dual-Storage Architecture

Relational storage for structured queries
save_email_to_db(user_id, email_id, meta)

Vector storage for semantic search
save_embedding(user_id, email_id, email_string)

Email Processing Pipeline
Stage 1: Discovery and Authentication

¢ User Enumeration: Query database for users with active Gmail inte-
gration

¢ Credential Retrieval: Load OAuth2 tokens from secure database stor-
age

¢ API Authentication: Establish authenticated Gmail API service con-
nections

« Rate Limit Management: Respect Google API quotas and usage limits

Stage 2: Email Retrieval and Filtering

e Message Listing: Fetch recent email message IDs with configurable
batch sizes

¢ Checkpoint Comparison: Compare against last processed email to
avoid duplicates

¢ Incremental Processing: Process only new emails since last successful
run

¢ Error Isolation: User-specific failures don’t affect other users

Stage 3: Content Extraction and Parsing

« Header Analysis: Extract all RFC 2822 compliant email headers

e Multipart Processing: Handle complex email structures with attach-
ments

¢ Content Decoding: Base64 decode email bodies with error recovery

27

« HTML Sanitization: Safe conversion of HTML content to searchable
text

e Attachment Metadata: Extract file information without downloading
content

Stage 4: Data Transformation and Storage

¢ Metadata Normalization: Transform Gmail API responses to consis-
tent schema

¢ Content Formatting: Optimize email content for Al analysis and em-
beddings

o« Database Storage: Insert structured data into PostgreSQL with ACID
guarantees

¢ Vector Generation: Create high-dimensional embeddings using OpenAl
models

¢ Checkpoint Updates: Mark processing progress for resumable opera-
tions

Performance Characteristics
Throughput and Scalability

e Processing Rate: 5 emails per user per 30-second cycle (150
emails/hour/user)

¢ Multi-User Capacity: Handles hundreds of users with isolated process-
ing

e Memory Efficiency: Single-email processing prevents memory accumu-
lation

« API Efficiency: Minimal API calls through incremental checkpoint sys-
tem

Error Handling and Recovery

e Graceful Degradation: Individual user failures don’t stop service
e Automatic Recovery: Checkpoint system enables seamless service

restart

e Data Consistency: Transaction rollbacks prevent partial processing
states

e Comprehensive Logging: Detailed error context for debugging and
monitoring

Resource Management

e« Connection Pooling: Efficient database connection reuse across users

¢ Memory Management: Processes emails individually to limit peak us-
age

¢« API Quota Management: Configurable rate limiting for Gmail API
compliance

28

¢« CPU Optimization: Efficient text processing and vector operations

Configuration and Deployment
Service Configuration

Current hardcoded values (should be environment-configurable)

POLLING_INTERVAL = 30 # Seconds between polling cycles
MAX_RESULTS_PER_USER = 5 # Ematls per user per cycle
EMBEDDING_MODEL = "openai-text-embedding-3-large"
VECTOR_DIMENSIONS = 3072 # Model-specific embedding size

Environment Requirements

e Python Dependencies: Flask, psycopg2, google-api-python-client,
qdrant-client

o External Services: Gmail API access, OpenAl API key, Qdrant instance

e Database Schema: PostgreSQL ~ with emails, email chunks,
gmail_tokens tables

e« Network Access: Outbound HTTPS for APIs, inbound connections to
databases

Deployment Considerations

¢ Process Management: Use systemd, supervisor, or PM2 for daemon
operation

¢ Resource Monitoring: Track memory usage, API quotas, and process-
ing rates

¢ Log Management: Structured logging for operational visibility and de-
bugging

¢ Health Checks: Monitor database connectivity, API availability, and
processing status

e Scaling Strategy: Horizontal scaling through multiple service instances
with user sharding

Security and Compliance
Data Security

e OAuth2 Token Management: Secure storage and refresh of Gmail
access credentials

¢ Multi-Tenant Isolation: Complete data separation between user ac-
counts

e Content Sanitization: Safe HTML processing prevents XSS and injec-
tion attacks

e API Security: Parameterized queries prevent SQL injection vulnerabili-
ties

29

Privacy Protection

e Minimal Data Exposure: Process only necessary email metadata and
content

e Secure Storage: Encrypted database connections and credential storage

e Access Control: User-specific data isolation throughout processing
pipeline

e Audit Trails: Complete logging of data access and processing operations

Compliance Features

o Data Retention: Configurable email storage and deletion policies

¢ Processing Logs: Comprehensive audit trails for regulatory require-
ments

¢ Right to Deletion: Support for user data removal and account deacti-
vation

¢ International Compliance: Timezone-aware processing and storage

Integration Points

Frontend Integration

e Dashboard Analytics: Email processing statistics and user metrics

e Search Interface: Vector-powered semantic email search capabilities

e Account Management: Gmail integration status and configuration op-
tions

Backend Services

e Chat System: Semantic search integration for Al-powered email queries
e Analytics Engine: Processing metrics and usage statistics
¢ Notification System: Real-time updates on email processing status

External APIs

e Gmail API: Primary data source for email content and metadata
e OpenAlI API: Embedding generation for semantic search capabilities
e Qdrant API: Vector storage and similarity search operations

Monitoring and Observability

Operational Metrics

¢ Processing Rate: Emails processed per hour per user

e« Error Rate: Failed processing attempts and recovery statistics

e API Usage: Gmail and OpenAl API consumption and quota utilization
e Storage Growth: Database and vector storage utilization trends

30

Health Indicators

e Service Availability: Continuous operation status and uptime tracking

e« Database Connectivity: PostgreSQL and Qdrant connection health
monitoring

¢« API Connectivity: External service availability and response time track-
ing

¢ Resource Utilization: Memory, CPU, and network usage patterns

Alert Conditions

e Processing Failures: Consecutive failures for individual users

¢« API Quota Exhaustion: Approaching Gmail or OpenAl usage limits
e Storage Issues: Database connection failures or capacity constraints

¢ Performance Degradation: Significant increases in processing time

Vector Database Integration (Qdrant)

Location: Qdrant integration spans polling.py, qdrant_t.py, and utility
functions

Purpose: Provides high-performance vector storage and semantic similarity
search capabilities for Al-powered email analysis.

Qdrant Architecture Overview

Qdrant serves as NovusAl’s vector database solution, enabling semantic search
across email content through high-dimensional vector embeddings. The integra-
tion provides:

e Vector Storage: Efficient storage of 3072-dimensional OpenAl embed-
dings

e Similarity Search: Sub-second cosine similarity queries across millions
of vectors

¢« Metadata Filtering: Combined vector and attribute-based search capa-
bilities

e Horizontal Scaling: Distributed deployment support for large-scale op-
erations

Vector Collection Structure Collection Name: email_chunks Vector
Configuration:

VectorParams(
size=3072, # OpenAl text-embedding—-3-large dimensions
distance=Distance.COSINE # Cosine similarity for semantic relationships

31

Point Structure:

PointStruct(
id=uuid4_string, # Unique identifier for cross-system reference
vector=embedding_vector, # 3072-dimensional semantic Tepresentation
payload={
"user_id": str, # Multi-tenant isolation
"email_id": str, # Cross-reference to PostgreS@L
"embedding_model": str # Model wersion tracking
3
)

Integration with Email Processing

Embedding Generation Pipeline

1. Content Preparation: Email content formatted by format_email_to_string()

2. API Request: OpenAl embedding generation via embeddings () utility
3. Vector Validation: Dimension verification and model consistency checks
4. Collection Management: Automatic collection creation and configura-
tion

Point Storage: Vector insertion with metadata payload

6. Reference Storage: PostgreSQL metadata linking for relational queries

o

Search and Retrieval Operations

Semantic search across user's ematils
search_results = gdrant.search(
collection_name="email chunks",
query_vector=query_embedding,
query_filter=Filter(
must=[
FieldCondition(
key="user_id",
match=MatchValue(value=user_id)

),
limit=10

Performance Characteristics
Query Performance

e Search Latency: Sub-100ms similarity searches on million+ vector col-
lections
¢ Throughput: Thousands of concurrent search operations per second

32

e Accuracy: High-precision semantic matching with configurable similarity
thresholds
o Filtering: Efficient metadata filtering without performance degradation

Storage Efficiency

¢ Vector Compression: Automatic compression for reduced storage foot-
print

¢ Memory Management: Intelligent caching for frequently accessed vec-
tors

o Disk Optimization: Efficient storage layout for large-scale deployments

e Index Management: Automatic indexing for optimal search perfor-
mance

Scalability Features

e Horizontal Scaling: Multi-node deployment support for large datasets
¢ Load Balancing: Automatic query distribution across cluster nodes

« Replication: Data redundancy and failover capabilities

e Backup Support: Snapshot and restore operations for data protection

Configuration and Deployment

Qdrant Server Configuration

qgdrant.yaml exzample configuration
service:

host: 0.0.0.0

port: 6333

storage:
storage_path: "./qdrant_storage"

log_level: INFO

cluster:
enabled: false # Enable for distributed deployment
Connection Management

Application connection configuration
gdrant = QdrantClient(

host="localhost", # @drant server host
port=6333, # Default Qdrant port
timeout=30 # Connection timeout

33

Collection Management

Automatic Creation: Collections created on first use with proper con-
figuration

Schema Evolution: Support for embedding model changes and dimen-
sion updates

Maintenance Operations: Automatic optimization and cleanup proce-
dures

Monitoring Integration: Performance metrics and health status report-

ing

Security and Access Control

Network Security

Connection Security: TLS encryption for client-server communication
API Authentication: Token-based authentication for production de-
ployments

Network Isolation: Private network deployment recommendations
Firewall Configuration: Port restrictions and access control lists

Data Protection

Tenant Isolation: User-specific data separation through payload filter-
ing

Access Patterns: Application-level access control and audit logging
Data Encryption: At-rest encryption for sensitive vector data
Backup Security: Encrypted backup storage and secure recovery proce-
dures

Integration with Chat System

Query Processing Flow

1.

User Query: Natural language input from chat interface

2. Query Embedding: Convert user query to vector using same embedding

=~ w

model

Similarity Search: Find semantically similar email content in Qdrant
Result Filtering: Apply user-specific filters and access controls
Content Retrieval: Cross-reference vector results with PostgreSQL
metadata

Response Generation: Provide relevant email context to Al chat sys-
tem

Semantic Search Capabilities

Intent Understanding: Semantic matching beyond keyword-based
search

34

¢ Context Awareness: Understanding of email relationships and thread-
ing

e Multilingual Support: Cross-language semantic matching capabilities

e Temporal Filtering: Time-based constraints combined with semantic
similarity

Database Schema
Database Configuration

Database System: PostgreSQL
Connection Management: psycopg2 (Python) and pg (Node.js)
Location: novusai/src/backend/db.py

Connection Details

conn = psycopg2.connect(
dbname=os.getenv ("PGDATABASE"),
user=os.getenv ("PGUSER") ,
password=os.getenv ("PGPASSWORD"),
host=o0s.getenv ("PGHOST"),
port=os.getenv("PGPORT"),
sslmode=os.getenv("PGSSLMODE", "require'")

Table Schemas

users Table Purpose: Stores user authentication and profile information

Column Type Constraints Description

id SERIAL PRIMARY KEY Auto-incrementing user identifier
username VARCHAR(255) UNIQUE, NOT NULL User login identifier

password VARCHAR(255) NOT NULL BCrypt hashed password
created_at TIMESTAMP DEFAULT NOW() Account creation timestamp

user__chat__sessions Table Purpose: Stores chat conversation history and
metadata

Column Type Constraints Description

id SERIAL PRIMARY KEY Auto-incrementing
session identifier

chathash VARCHAR(2ENIQUE, NOT NULL URL-safe session
identifier

35

Column Type Constraints Description

username VARCHAR(2BDREIGN KEY Reference to
users.username

chat__data JSONB NOT NULL Conversation history
and metadata

created_ at TIMESTAMBEFAULT NOW() Session creation
timestamp

chat__data JSON Structure:

{
"chatname": "Human-readable session title",
"user": ["User message 1", "User message 2"],
"bot": ["AI response 1", "AI response 2"]

}

gmail__tokens Table Purpose: Stores OAuth credentials for Gmail integra-
tion

Column Type Constraints Description

id SERIAL PRIMARY KEY Auto-incrementing
token identifier

user_id INTEGER FOREIGN KEY Reference to users.id

email_address VARCHAR(25%)T NULL Gmail account email
address

credentials_ json TEXT NOT NULL Serialized OAuth2
credentials

linked at TIMESTAMBEFAULT NOW() Account linking
timestamp

last__seen email TIHXT Last processed email

for resumable polling

emails Table Purpose: Stores comprehensive email metadata and content
from Gmail API processing

Column Type Constraints Description

user__id UUID NOT NULL Multi-tenant isolation
key

gmail msg id TEXT PRIMARY KEY Gmail’s unique
message identifier

thread id TEXT Gmalil conversation

thread identifier

36

Column Type Constraints Description
subject TEXT Email subject line
from addr TEXT Sender email address
and display name
to_addrs TEXT Primary recipient
addresses
cc_addrs TEXT Carbon copy recipient
addresses
bee__addrs TEXT Blind carbon copy
recipients
date TIMESTAMPTZ Original email
timestamp with
timezone
snippet TEXT Gmail-generated
preview text
body TEXT Consolidated email
content for search
labels TEXT(] Gmail labels as
PostgreSQL array
created_at TIMESTAMBIEFAULT NOW() Record creation
timestamp
updated_ at TIMESTAMBIEFAULT NOW() Last modification
timestamp
email_id TEXT Compatibility field

(duplicate of
gmail_msg_id)

email chunks
dings in Qdrant

Table Purpose: Stores metadata for email vector embed-

Column Type Constraints Description

id UUID PRIMARY KEY Unique identifier
matching Qdrant
point ID

user_id INTEGER FOREIGN KEY Reference to users.id

email id TEXT FOREIGN KEY Reference to

embedding dim INTEGER NOT NULL

embedding_ modMARCHAR(25K)T NULL

created_at

TIMESTAMIZFAULT NOW/()

37

emails.gmail _msg id
Vector dimension
count

Embedding model
identifier

Record creation
timestamp

Column Type Constraints Description

updated__at TIMESTAMBYEFAULT NOW () Last modification
timestamp

Composite Unique Index: (user_id, email_id) for deduplication

dashboard Table Purpose: Tracks user analytics and usage statistics

Column Type Constraints Description

id INTEGER PRIMARY KEY Reference to users.id
emails_ processed INTEGER DEFAULT 0 Total emails analyzed
documents_ uploaded INTEGER DEFAULT 0 Total files processed
ai_task_completed INTEGER DEFAULT 0 Total Al operations
monthly usage DECIMAL(10,4) DEFAULT 0 Monthly usage percentage

entries Table (Node.js Server) Purpose: General data storage for Node.js
operations

Column Type Constraints Description
id SERIAL PRIMARY KEY Auto-incrementing entry identifier
text TEXT NOT NULL Entry content

created_at TIMESTAMP DEFAULT NOW() Entry creation timestamp

Database Operations
Connection Management

e Persistent connections maintained throughout application lifecycle
e Automatic reconnection handling for database failures

e Connection pooling for performance optimization

e SSL/TLS encryption for data transmission security

Transaction Handling

o Explicit transaction management for data consistency
¢ Rollback operations for error recovery

e ACID compliance for all database operations

o Connection-level transaction isolation

38

Server Configuration
Flask Server (Python)
Location: novusai/src/backend/server.py

Purpose: Main Python application server handling AI operations and API
routes.

Server Configuration create_app() Function: - Purpose: Factory func-
tion creating configured Flask application instance - Components: 1. Flask
Instance: Creates base application with default configuration 2. CORS
Setup: Enables cross-origin requests for frontend integration 3. Secret
Key: Configures JWT signing key (environment variable recommended) 4.
Blueprint Registration: Mounts API route modules - Returns: Configured
Flask application ready for deployment

Blueprint Registration:

app.register_blueprint (auth_bp) # Authentication routes (/api/register, /api/login)
app.register_blueprint (chat_bp) # Chat management (/apti/chat/*)
app.register_blueprint(gmail_bp) # Gmail integration (/api/gmail/*)

app.register_blueprint(dashboard_bp) # Dashboard analytics (/api/dashboard, /api/emails)

Development Server Configuration: - Debug Mode: Enabled for devel-
opment with auto-reload - Port: 5001 (configurable via environment) - Host:
Localhost binding for local development

Security Configuration CORS Policy: - Enables cross-origin requests for
React frontend - Configurable origins for production deployment - Credential
support for authenticated requests

JWT Configuration: - Secret key management via environment variables -
Token expiration policies - Signature validation algorithms

Node.js Server (Express)

Location: novusai/src/backend/server. js

Purpose: Dedicated server for PostgreSQL database operations and general
API endpoints.

Server Configuration Express Application Setup:

const app = express();
app-use(cors()); // Cross-origin request handling
app.use (express. json()); // JSON request body parsing

Database Connection Pool:

39

const pool = new Pool({
user: process.env.PGUSER,
host: process.env.PGHOST,
database: process.env.PGDATABASE,
password: process.env.PGPASSWORD,
port: process.env.PGPORT,
ssl: { rejectUnauthorized: false }

B

API Endpoints POST /api/entries - Purpose: Creates new database en-
tries - Parameters: text (String) - Entry content - Process: Inserts data into
entries table - Returns: HTTP 200 on success, error details on failure

GET /api/entries - Purpose: Retrieves all entries in reverse chronological
order - Returns: JSON array of entry objects with ID, text, and timestamps -
Ordering: Most recent entries first (ORDER BY id DESC)

Performance Configuration Connection Pooling: - Maintains pool of
database connections for efficiency - Automatic connection management and
recycling - Configurable pool size and timeout settings

SSL Configuration: - SSL/TLS encryption for database connections - Certifi-
cate validation configuration - Production-ready security settings

API Endpoints Reference
Authentication Endpoints

POST /api/register Purpose: User account creation
Authentication: None required
Request Body:

{
"username": "string",
"password": "string"

3

Response: Success message or error details
Status Codes: 200 (success), 400 (validation error), 500 (server error)

POST /api/login Purpose: User authentication and token generation
Authentication: None required
Request Body:

{

"username": "string",

40

"password": "string"

}
Response:
{
"message": "Login successful",
"token": "jwt_token_string",
"user": {
"id": 123,
"username": "string"
}
}

GET /api/user Purpose: Current user information retrieval
Authentication: JWT token required
Response: User ID and username from token

Chat Management Endpoints

POST /api/chat/start Purpose: Initialize new chat session
Authentication: JWT token required
Request Body:

{

"chathash": "unique_session_id",
"chatname": "Chat Title"
}

Response: Session creation confirmation

POST /api/chat Purpose: Send message and receive Al response
Authentication: JWT token required
Request Body:

{
"chathash": "session_id",
"chatname": "Chat Title",
"usermsg": "User message content"
}
Response:
{
"response": "AI generated response"
}

41

GET /api/chat Purpose: Retrieve all user chat sessions
Authentication: JWT token required
Response: Array of chat objects with messages and metadata

PATCH /api/chat//rename Purpose: Update chat session title
Authentication: JWT token required
Request Body:

{
"new_name": "Updated Chat Title"
¥

DELETE /api/chat/ Purpose: Remove chat session and history
Authentication: JWT token required
Response: Deletion confirmation

Dashboard Endpoints

GET /api/dashboard Purpose: User analytics and usage statistics
Authentication: JWT token required
Response:

{
"emails_processed": O,
"documents_uploaded": O,
"ai_task_completed": O,
"monthly_usage": 0.00

GET /api/emails Purpose: List linked Gmail accounts
Authentication: JWT token required

Response:
{

"email _addresses": ["emaill@gmail.com", "email2@gmail.com"]
X

Database Endpoints (Node.js)

POST /api/entries Purpose: Create database entry
Authentication: None required
Request Body:

{

"text": "Entry content"

3

42

GET /api/entries Purpose: Retrieve all entries
Authentication: None required
Response: Array of entry objects with ID, text, and timestamps

Setup and Installation
Prerequisites

System Requirements: - Node.js 164+ and npm - Python 3.8+ and pip -
PostgreSQL 12+ database server - Qdrant vector database server - OpenAl
APT account and API key - Gmail API credentials (for email integration)

Frontend Setup

1. Navigate to Frontend Directory:
cd novusai/

2. Install Node.js Dependencies:
npm install

3. Install Additional Dependencies:

npm install react react-dom react-scripts

npm install react-katex katex

npm install react-markdown remark-math rehype-katex
npm install lucide-react sass

4. Start Development Server:
npm start

Application will be available at http://localhost:3000

Backend Setup

1. Navigate to Backend Directory:

cd novusai/src/backend/

2. Create Python Virtual Environment:

python -m venv venv
source venv/bin/activate

3. Install Python Dependencies:

pip install flask flask-cors
pip install psycopg2-binary python-dotenv
pip install werkzeug jwt

43

pip install openai google-auth google-auth-oauthlib google-auth-httplib2 google-api-python-—«
pip install gdrant-client colorama uuid

4. Install and Configure Qdrant Vector Database:

Using Docker (recommended)

docker run -d --name qdrant -p 6333:6333 qdrant/qdrant
Or install locally following (drant documentation

https://qdrant.tech/documentation/install/

4. Configure Environment Variables: Create .env file in backend direc-
tory:

Database Configuration
PGDATABASE=your_database_name
PGUSER=your_database_user
PGPASSWORD=your_database_password
PGHOST=1localhost

PGPORT=5432

PGSSLMODE=require

JWT Configuration
JWT_SECRET=your-super-secret-jwt-key

OpenAI Configuration
OPENAI_API_KEY=your-openai-api-key

Gmail API Configuration
GOOGLE_CLIENT_ID=your-gmail-client-id
GOOGLE_CLIENT_SECRET=your-gmail-client-secret

Qdrant Configuration
QDRANT_HOST=localhost
QDRANT_PORT=6333

5. Start Python Server:

python server.py

API will be available at http://localhost:5001

6. Start Email Polling Service (separate terminal):

python polling.py

This starts the continuous email monitoring and processing service.
7. Start Node.js Server (separate terminal):

node server.js

44

Database API will be available at http://localhost:5001

Database Setup
1. Create PostgreSQL Database:

CREATE DATABASE novusai_db;
CREATE USER novusai_user WITH PASSWORD 'secure_password';
GRANT ALL PRIVILEGES ON DATABASE novusai_db TO novusai_user;

2. Create Database Tables:

-— Users table
CREATE TABLE users (
id SERIAL PRIMARY KEY,
username VARCHAR(255) UNIQUE NOT NULL,
password VARCHAR(255) NOT NULL,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);

—-— Chat sesstons table
CREATE TABLE user_chat_sessions (
id SERIAL PRIMARY KEY,
chathash VARCHAR(255) UNIQUE NOT NULL,
username VARCHAR(255) REFERENCES users(username),
chat_data JSONB NOT NULL,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);

-— Gmail tokens table
CREATE TABLE gmail_tokens (
id SERIAL PRIMARY KEY,
user_id INTEGER REFERENCES users(id),
email _address VARCHAR(255) NOT NULL,
credentials_json TEXT NOT NULL,
linked_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
last_seen_email_id TEXT -- Checkpoint for resumable email processing

)

-— Email storage table

CREATE TABLE emails (
user_id UUID NOT NULL,
gmail_msg_id TEXT PRIMARY KEY,
thread_id TEXT,
subject TEXT,
from_addr TEXT,
to_addrs TEXT,

45

cc_addrs TEXT,
bcc_addrs TEXT,
date TIMESTAMPTZ,
snippet TEXT,
body TEXT,
labels TEXTI[],
created_at TIMESTAMPTZ DEFAULT NOW(),
updated_at TIMESTAMPTZ DEFAULT NOW(Q),
email_id TEXT
);

-— Email vector embeddings metadata table
CREATE TABLE email_chunks (
id UUID PRIMARY KEY,
user_id INTEGER REFERENCES users(id),
email_id TEXT,
embedding_dim INTEGER NOT NULL,
embedding_model VARCHAR(255) NOT NULL,
created_at TIMESTAMPTZ DEFAULT NOWQ),
updated_at TIMESTAMPTZ DEFAULT NOW(Q),
UNIQUE(user_id, email_id) -- Prevent duplicate embeddings
)3

—- Dashboard statistics table

CREATE TABLE dashboard (
id INTEGER PRIMARY KEY REFERENCES users(id),
emails_processed INTEGER DEFAULT O,
documents_uploaded INTEGER DEFAULT O,
ai_task_completed INTEGER DEFAULT O,
monthly_usage DECIMAL(10,4) DEFAULT O

)

-- Entries table for Node.js server
CREATE TABLE entries (
id SERIAL PRIMARY KEY,
text TEXT NOT NULL,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP

)

Gmail API Setup

1. Google Cloud Console Configuration: - Create new project in Google
Cloud Console - Enable Gmail API for the project - Create OAuth 2.0 credentials
- Configure authorized redirect URIs

2. OAuth Consent Screen: - Configure application name and user support

46

email - Add authorized domains for your application - Request minimal scopes
for Gmail read access

3. Download Credentials: - Download client configuration JSON - Extract
client ID and secret for environment variables

Deployment Guide
Production Environment Setup

1. Environment Configuration: Update environment variables for produc-
tion:

NODE_ENV=production
JWT_SECRET=production-secret-key-128-chars-minimum
PGHOST=production-database-host

PGSSLMODE=require
OPENAI_API_KEY=production-openai-key
QDRANT_HOST=production-qdrant-host
QDRANT_PORT=6333

2. Service Deployment: - Flask API Server: Main application API
on port 5001 - Node.js Server: Database operations on port 3001 - Email
Polling Service: Background daemon for email processing - Qdrant Vector
Database: Vector storage and search service - Process Management: Use
systemd, PM2, or Docker for service management

3. Database Security: - Use connection pooling for performance - Enable
SSL/TLS for all database connections - Configure firewall rules for database ac-
cess - Set up automated backups and monitoring - Qdrant Security: Configure
authentication and network isolation

3. Frontend Build:

cd novusai/
npm run build

4. Server Deployment: - Use process managers (PM2, systemd) for server
reliability - Configure reverse proxy (Nginx) for load balancing - Set up SSL
certificates for HTTPS - Implement logging and monitoring - Email Polling
Service: Deploy as systemd service for automatic restart - Qdrant Deploy-
ment: Use Docker or native installation with persistence

Example systemd service for email polling:

[Unit]
Description=NovusAI Email Polling Service
After=network.target postgresql.service

47

[Service]

Type=simple

User=novusai
WorkingDirectory=/path/to/novusai/src/backend
ExecStart=/path/to/venv/bin/python polling.py
Restart=always

RestartSec=10

[Install]
WantedBy=multi-user.target

Security Considerations

Authentication Security: - Use strong JWT secret keys (minimum 128 char-
acters) - Implement token refresh mechanisms - Set appropriate token expiration
times - Use HTTPS for all authentication endpoints

Database Security: - Use parameterized queries to prevent SQL injection -
Implement proper database user permissions - Enable connection encryption
and authentication - Regular security updates and patches

API Security: - Implement rate limiting for API endpoints - Use CORS poli-
cies appropriate for production - Validate all input data and sanitize outputs -
Monitor for suspicious activity and implement logging

Performance Optimization

Frontend Optimization: - Code splitting for reduced bundle sizes - Asset
compression and minification - CDN integration for static assets - Progressive
Web App (PWA) features

Backend Optimization: - Database query optimization and indexing -
Caching strategies for frequently accessed data - Asynchronous processing for
heavy operations - Load balancing for high availability

Monitoring and Maintenance

Application Monitoring: - Error tracking and alerting systems - Performance
metrics and analytics - User activity monitoring - API usage and cost tracking

Maintenance Procedures: - Regular security updates and patches - Database
maintenance and optimization - Backup verification and recovery testing - Ca-
pacity planning and scaling assessments

48

Docker Deployment Progress
Current Deployment Status

The NovusAl application has been successfully deployed using Docker containers

with the following services:

Successfully Running Services Backend API Server (Flask) - Status:
Healthy and Running - Port: 5001 - Health Check: http://localhost:5001/api/health

Echo API Endpoint - Status: Working - Purpose: Request diagnostics and
CORS testing - Endpoint: http://localhost:5001/api/echo

PostgreSQL Database - Status: Healthy and Running
- Port: 5432 - Database: novusai_db - User: novus_user

Qdrant Vector Database - Status: Running - Port: 6333-6334 - Version:
1.15.3 - Purpose: Vector search engine for Al embeddings

Ngrok Tunnel Service - Status: Running - Purpose: External access to
backend API - Domain: mighty-musical-turtle.ngrok-free.app

Refresh In Progress React Frontend - Status: Refresh Container build-
ing but experiencing dependency issues - Port: 3000 (when operational) - Is-
sue: npm package installation timeouts in container environment - Solution:

Frontend dependencies are being resolved

Available API Endpoints

The backend Flask server is fully operational with the following endpoints:

e GET /api/health - Service health check
e GET /api/echo - Request diagnostics
e /api/auth/* - Authentication endpoints

e /api/chat/* - Chat functionality
e /api/gmail/* - Gmail integration
e /api/dashboard/* - Analytics dashboard

e /api/rag/* - Retrieval Augmented Generation

Docker Container Status

NAME STATUS

novus_backend Up (healthy)
novus_postgres Up (healthy)
novus_qgdrant Up

novus_ngrok Up

novus_frontend Restarting (dep issues)

49

PORTS
0.0.0.0:5001->5001/tcp
0.0.0.0:5432->5432/tcp
0.0.0.0:6333-6334->6333-6334/tcp
4040/tcp
0.0.0.0:3000->3000/tcp

Next Steps

1. Frontend Resolution: Complete React dependency installation
2. UI Testing: Access full web interface at http://localhost:3000

3. Integration Testing: Test complete user workflows

4. Production Deployment: Configure for production environment

This documentation provides comprehensive coverage of the NovusAl applica-
tion architecture, implementation details, and deployment procedures. For addi-
tional support or questions, refer to the inline code comments and error handling
implementations throughout the codebase.

50

	NovusAI - Technical Documentation
	Table of Contents
	Architecture Overview
	Technology Stack

	Backend Runtime Architecture
	Frontend Components (React.js)
	App.js - Main Application Controller
	Chat.jsx - AI Conversation Interface
	Dashboard.jsx - User Analytics and Gmail Integration
	Upload.jsx - File Processing Interface
	Settings.jsx - Configuration Management
	Home.jsx - Landing Page
	login.jsx - Authentication Interface
	FileStorage.jsx - Document Library & Viewer
	Rag.jsx - Retrieval Playground
	Payments.jsx - Stripe Billing Console
	SshConsole.jsx - Data & Backup Console
	UserManagment.jsx - Org Roster & Audit Tools

	Backend API Routes (Flask)
	auth.py - Authentication Management
	chat.py - Chat Session Management
	gmail.py - Gmail Integration
	dashboard.py - User Analytics and Account Management
	broad_questions.py - RAG Orchestrator & Humanizer
	Rag.py - Retrieval-Augmented Answer Service
	upload.py - Multi-Format Document Ingestion
	filestorage.py - Secure Asset Delivery
	pdf.py - HTML-to-PDF Rendering Service
	billing.py - Stripe Subscriptions & Usage Accounting
	backups.py - Qdrant, SQL, and User File Backups
	gmail.py - Google OAuth & Inbox Snapshotting
	logs.py - Organisation Log Browser
	users.py - Organisation Membership Management

	Backend Utilities
	openai_client.py - AI Integration
	Cache.py - Redis-Backed Memoisation Layer
	redis_client.py - Central Redis Connection Factory
	auth_helperes.py - JWT Guard Rails
	user_helpers.py - User Context & Audit Trail
	system_logger.py - Structured System Logging
	qdrant_helper.py - Vector Store Management
	memory_glue.py - Conversational Memory Service
	gmail_helpers.py - Gmail API Operations
	auth_helpers.py - Authentication Utilities
	user_helpers.py - User Data Utilities

	Email Polling System
	System Architecture
	Email Processing Pipeline
	Performance Characteristics
	Configuration and Deployment
	Security and Compliance
	Integration Points
	Monitoring and Observability

	Vector Database Integration (Qdrant)
	Qdrant Architecture Overview
	Integration with Email Processing
	Performance Characteristics
	Configuration and Deployment
	Security and Access Control
	Integration with Chat System

	Database Schema
	Database Configuration
	Table Schemas
	Database Operations

	Server Configuration
	Flask Server (Python)
	Node.js Server (Express)

	API Endpoints Reference
	Authentication Endpoints
	Chat Management Endpoints
	Dashboard Endpoints
	Database Endpoints (Node.js)

	Setup and Installation
	Prerequisites
	Frontend Setup
	Backend Setup
	Database Setup
	Gmail API Setup

	Deployment Guide
	Production Environment Setup
	Security Considerations
	Performance Optimization
	Monitoring and Maintenance

	Docker Deployment Progress
	Current Deployment Status
	Available API Endpoints
	Docker Container Status
	Next Steps

